首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112499篇
  免费   12421篇
  国内免费   5827篇
电工技术   16322篇
技术理论   16篇
综合类   7517篇
化学工业   13004篇
金属工艺   4605篇
机械仪表   5551篇
建筑科学   11834篇
矿业工程   3512篇
能源动力   16744篇
轻工业   7007篇
水利工程   2583篇
石油天然气   3886篇
武器工业   1249篇
无线电   9713篇
一般工业技术   10827篇
冶金工业   4792篇
原子能技术   1649篇
自动化技术   9936篇
  2024年   328篇
  2023年   2401篇
  2022年   3813篇
  2021年   4485篇
  2020年   4676篇
  2019年   4040篇
  2018年   3415篇
  2017年   4075篇
  2016年   4526篇
  2015年   4598篇
  2014年   7984篇
  2013年   7186篇
  2012年   8518篇
  2011年   9234篇
  2010年   6911篇
  2009年   6865篇
  2008年   6123篇
  2007年   6996篇
  2006年   5841篇
  2005年   4702篇
  2004年   4004篇
  2003年   3505篇
  2002年   2954篇
  2001年   2489篇
  2000年   2035篇
  1999年   1622篇
  1998年   1281篇
  1997年   966篇
  1996年   911篇
  1995年   731篇
  1994年   653篇
  1993年   513篇
  1992年   434篇
  1991年   346篇
  1990年   269篇
  1989年   222篇
  1988年   198篇
  1987年   137篇
  1986年   105篇
  1985年   139篇
  1984年   109篇
  1983年   72篇
  1982年   85篇
  1981年   41篇
  1980年   49篇
  1979年   29篇
  1978年   18篇
  1977年   18篇
  1974年   12篇
  1951年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
In this study, first-principles calculations were performed to investigate the catalytic effect of NiN4-G on the dehydrogenation of MgH2. Side-on MgH2 can be adsorbed stably on the NiN4-G monolayer and is preferentially adsorbed on the NiN4 site compared with the graphene site. The hydrogen desorption process, in which MgH2 dissociated to the Mg atom on the NiN4 site or graphene site and an H2 molecule in the vacuum, should overcome lower barriers than pure MgH2. This is because the corresponding Mg–H bond is weakened owing to the electron transfer between the Mg atom and the substrate. The hydrogen desorption enthalpies of the (MgH2)5 cluster on the NiN4 active and graphene sites are significantly smaller (0.11 eV and 1.50 eV, respectively) when H2+H2 is released from the cluster compared with those of the undoped MgH2 cluster (2.48 eV). Therefore, the NiN4-G monolayer can provide the double effect of the NiN4 active and graphene sites on improving the dehydrogenation performance of MgH2.  相似文献   
32.
猪肉是我国消耗量最大的肉类品,尤其是冷鲜猪肉更受人们青睐。猪胴体冷却保鲜加工工艺既要满足优质猪肉的成熟条件,又要保证猪肉的安全卫生。猪胴体冷却温度和降温速度对保证加工工艺合理性和降低耗能都至关重要。在实测数据基础上经过判断、分析提出,在常规0~4 ℃冷却前先在-10~-5 ℃低温快速冷却猪胴体1 h从而更好地保证猪胴体的冷却效果。实验发现:猪胴体开始冷却时,内部温度先有2~4 ℃的升温,然后才会降温,因此需对热负荷计算进行修正;根据两段冷却过程中猪胴体的冷却降温特点,提出了对应的冷量要求,为配备冷却装置提供了依据。  相似文献   
33.
《Journal of dairy science》2022,105(5):3926-3938
Sensory and physical properties of 2 lemon-flavored beverages with 5% and 7.5% wt/wt nonfat dry milk (NFDM) at pH 2.5 were studied during storage. The 2 beverages had similar volatile compounds, but the 5% NFDM had higher aroma and lemon flavor, with a preferred appearance by consumers due to the lower turbidity and viscosity. After 28 d of storage at 4°C, lemon flavor decreased in the 5% NFDM beverage but was still more intense than the 7.5% one. During 70 d of storage, no microorganisms were detected, and the beverages were more stable when stored at 4°C than at room temperature according to changes of physical properties measured for appearance, turbidity, color, particle size, zeta potential, rheological properties, and transmission electron microscopy morphology. Findings of the present study suggest that NFDM may be used at 5% wt/wt to produce stable acidic dairy beverages with low turbidity when stored at 4°C.  相似文献   
34.
《Ceramics International》2022,48(15):21935-21944
Transition metal carbide or nitride (MXenes), as a novel family of two-dimensional materials, exhibit huge potential for electrochemical energy storage thanks to their excellent electrical conductivity, fast ion diffusion rate, high electrochemical activity and good hydrophilicity. However, the electrochemical properties of MXenes tend to be deteriorated due to the self-restacking phenomenon. Herein, by self-assembly, a unique three-dimensional (3D) Ti3C2Tx-PANI@CNTs (TPCs) nanoarchitecture was constructed. Through optimizing structures, the surface capacitance of TPCs can be tailored to tune energy storage. The optimal specific capacitance up to 431.9 F/g was achieved under 1 A/g. Further, the TPCs nanoarchitectures were prepared into self-standing films with excellent mechanical properties and micro-supercapacitors (MSCs) in various shapes were manufactured based on the film. The MSCs demonstrate competitive energy storage capacities, obtaining an areal capacitance of 78.2 mF/cm2 and energy density of up to 2.72 μWh/cm2, still maintain excellent performance under harsh bending. The strategy for constructing 3D nanoarchitectures and further manufacturing MSCs can inspire the design of novel electrode materials and devices to advance the development in the field of energy storage.  相似文献   
35.
At present, as the demand for electricity increases in all sectors, there is an urgent need to introduce alternative renewable energy sources into modern energy systems. Renewable energy sources, which consist of solar (photovoltaic, PV), wind and hydro power, are key alternative sources of “green energy’’ energies, but it can also be used to produce “green” hydrogen. Thanks to scientific and technological progress, the cost of photovoltaic solar radiation converters is constantly decreasing at a high rate, which makes it possible to build solar power plants of sufficiently large capacity. In the coming decades, solar energy will become an incentive for the economic development of countries that have the maximum “solar” resource. The Republic of Tajikistan is one of these countries with a high potential for solar energy.The article presents an analysis of the resources and potential of solar energy in the Republic of Tajikistan. The study of electromagnetic transients in networks with photovoltaic solar power plants is performed. The main equations, simulation model and calculations of transients are presented, taking into account changes in voltage on DC buses. An algorithm for controlling the system of automatic control of output parameters is proposed. The analysis of dynamic and static modes in parallel operation of a solar power plant with the grid is carried out. A block diagram and computer model is constructed in the MATLAB package together with Simulink and Power System Blockset.  相似文献   
36.
A climate neutral energy system in Germany will most likely require green hydrogen. Two important factors, that determine whether the hydrogen will be imported or produced locally from renewable energy are still uncertain though - the import price for green hydrogen and the upper limit for photovoltaic installations. To investigate the impact of these two factors, the authors calculate cost optimized climate neutral energy systems while varying the import price from 1.25 €/kg to 5 €/kg with unlimited import volume and the photovoltaic limit from 300 GW to unlimited. In all scenarios, hydrogen plays a significant role. At a medium import price of 3.75 €/kg and photovoltaic limits of 300–900 GW the hydrogen supply is around 1200 to 1300 TWh with import shares varying from 60 to 85%. In most scenarios the electrolysis profile is highly correlated with the photovoltaic power, which leads to full load hours of 1870 h–2770 h.  相似文献   
37.
In the present work, the heating performance of a new system combined with a new modified baseboard radiator and fan coil is investigated. Using longitudinal fins with special geometry and also forced airflow at the end of the system causes that at the lower inlet water temperature compared with the conventional models, higher heat output rate be obtained. The heat output rate of the new modified system is obtained by experimental metrology based on the European Standard No. EN-442. Temperature and velocity distribution in the room space is done by simulation of the modified system in the Flovent software. Computational fluid dynamics (CFD) results are validated against experimental results and there is a good agreement between them. Also, the energy consumption of the system during the winter season is calculated in TRANSYS software. Experimental results show that the heat output rate of a new modified heating system with inlet water temperature in the range of 45–55°C is on average 4.17 times higher compared with the conventional model. CFD simulation also showed that the combined system provides good thermal comfort conditions. Energy consumption of the new system reduced about 13% compared with conventional models.  相似文献   
38.
This study aims to improve the performances of a solar still single slope using metal oxide nanofluid (Al2O3–water, Cu2O–water, and TiO2–water). The numerical study was carried out for the climatic conditions of Agadir, Morocco, with different concentrations of nanofluids inside a basin equipped with an absorber plate with two different absorptivities. The numerical study is based on thermal balance equations applied on different solar system components and solved using the Runge Kutta method. The numerical model is validated by comparing our results with the literature available data. A comparison study of the effect of these nanofluids on solar still productivity is done. The results show that the productivity of the solar still using nanoparticles Cu2O, TiO2, and Al2O3 are 7.38, 7.1, and 7.064 kg m−2 day−1, respectively. It is obtained that the maximum efficiency of the solar still is found to be 55.27% by using cuprous oxide nanoparticles. Furthermore, an enhancement in solar still productivity of 6.36%, 19.54%, and 33.25% is obtained by dispersing 1%, 3%, and 5% volume fraction of Cu2O nanoparticles in pure water, respectively compared to the conventional solar. Moreover, the impact of the absorptivity of the absorber plate on the solar still effectiveness is investigated. Two types of coatings are considered to change the absorber plate absorptivity. The results indicate that the efficiencies of the solar system are 58.81% and 51.77% using an absorber plate with 0.95 and 0.85 of absorptivity, respectively.  相似文献   
39.
《Ceramics International》2022,48(4):4722-4731
In recent years, phase change material emulsions (PCMEs) with enhanced energy storage capacities and good flow characteristics have drawn significant attention. However, due to the thermodynamically unstable nature and tiny particle confinement, the nanomaterial modification strategies at PCM/water interface to improve stabilities and reduce supercooling of nano-sized PCMEs (NPCMEs) are very limited and challenging. Herein, we report a facile strategy for constructing MXene-decorated NPCME with good stability, little supercooling, and high thermal conductivity by self-assembly of MXene nanosheets at PCM/water interface. The concentrations of MXene have great influences on the average droplet diameters, stabilities, and thermophysical properties of the NPCMEs. The results show that the PCMs have been well dispersed into the water in the form of quasi-spherical droplets, with average droplet diameters of 242–805 nm. The thermal conductivity of 10 wt% n-tetradecane/water NPCME containing 9 mg ml-1 MXene is 0.693 W m-1·K-1, achieving an enhancement by 15.5%, as compared to that of water. Besides, the MXene-decorated paraffin/water NPCMEs exhibit little supercooling and enhanced heat storage capacities. More importantly, this facile self-assembly strategy opens a new platform for preparing high-performance NPCMEs, which can be used as novel heat transfer fluids for thermal energy storage systems.  相似文献   
40.
Quantitative Risk Assessment (QRA) supports the development of risk-informed safety codes and standards which are employed to enable the safe deployment of hydrogen technologies essential to decarbonize the transportation sector. System reliability data is a necessary input for rigorous QRA. The lack of reliability data for bulk liquid hydrogen (LH2) storage systems located on site at fueling stations limits the use of QRAs. In turn, this hinders the ability to develop the necessary safety codes and standards that enable worldwide deployment of these stations. Through a QRA-based analysis of a LH2 storage system, this work focuses on identifying relevant scenario and probability data currently available and ascertaining future data collection requirements regarding risks specific to liquid hydrogen releases. The work developed consists of the analysis of a general bulk LH2 storage system design located at a hydrogen fueling station. Failure Mode and Effect Analysis (FMEA) and traditional QRA modeling tools such as Event Sequence Diagrams (ESD) and Fault Tree Analysis (FTA) are employed to identify, rank, and model risk scenarios related to the release of LH2. Based on this analysis, scenario and reliability data needs to add LH2-related components to QRA are identified with the purpose of improving the future safety and risk assessment of these systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号